Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation
نویسندگان
چکیده
Biofilm accounts for 65-80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation.
منابع مشابه
Synergistic Effect of Methanolic Extracts of Rosmarinus Officinalis and Eugenia caryophyllata on Biofilm of Oral Pathogenic Bacteria
Introduction: Tooth decay is one of the most essential and costly diseases globally, which is caused by the formation of biofilms by various bacteria. This study aimed to investigate the synergistic antibacterial effect of Rosmarinus officinalis and Eugenia caryophyllataon inhibiting the growth and biofilm obtained of Streptococcus mutans and Streptococcus sanguinis bacteria. Methods: Rosmarin...
متن کاملEffect of Isolated Specific Lytic Phage against Growth and Biofilm Inhibition of Streptococcus mutans and Streptococcus sanguinis Isolated from Decayed Dental Plaque
Background and purpose: Despite advances in oral health and dental industry, tooth decay remains one of the most common oral diseases. One of the new methods to combat dental plaque, which is the main cause of caries, is using specific lytic bacteriophage. This study aimed to investigate the effect of isolated specific lytic phage against growth and biofilm inhibition of Streptococcus mutans an...
متن کاملIdentification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.
Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm forma...
متن کاملTetR Family Regulator brpT Modulates Biofilm Formation in Streptococcus sanguinis
Biofilms are a key component in bacterial communities providing protection and contributing to infectious diseases. However, mechanisms involved in S. sanguinis biofilm formation have not been clearly elucidated. Here, we report the identification of a novel S. sanguinis TetR repressor, brpT (Biofilm Regulatory Protein TetR), involved in biofilm formation. Deletion of brpT resulted in a signifi...
متن کاملCharacterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii.
Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H(2)O(2)). Surprisingly, S. sanguinis and S. gordonii cell int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 163 شماره
صفحات -
تاریخ انتشار 2017